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Control problems for quasilinear deterministic systems without time lag were 
analyzed in [1,21. In the present paper the control of quasilinear stochastic 
systems, whose theory has been presented in [3 -61, is studied. The approx- 
imate synthesis of the control of stochastic systems with aftereffect is of 

importance since the construction of their exact optimal control is successful 
only in exceptional cases [7,8]. In the paper an approximate optimal control 
synthesis algorithm is proposed and a method for obtaining error bounds, diff- 
erent from ones previously obtained [9, lo], is developed. 

1. Let {Q, o, P} b e a fixed probability space: {Qr, t > 0) be a monoton- 
ically decreasing family of o -algebras, Q1 C (7, W(t) = (W, (t), . . ., WN (t)) 
be an N -dimensional standard Wiener process; v” (t, A) be a centered Poisson 
measure with parameter tn (A); the process W (t) and the measure V” (t, A) be 
mutually independent and Ql -measurable when t>o. The measure II (A) 
is defined on Bore1 sets in Euclidean space fin; Ho is the set of deterministic functions 

cp (a) (--h < s < 0)with values in R” , having limits from the left and also being 
right-continuous when s < 0. The norm in H,, is defined by the equality 

/I cp 1) = suP-h<s<o 1 cp (d I 

The functionals encountered later on in the paper, specified on [O, T1 X Ho, are 
reckoned to b,: measurable relative to the o-algebra of Bore1 sets of space [O, TJ X 

Ho l 
By Cl,, 0 < t < T, we denote the family of operators associating the funct- 

ion e,t = E (t + s) with an arbitrary function E (sr), - h L< SI < T . Here s 

ranges the values -h < s < 0 for each fixed t . 
Our purpose in the paper is to construct an approximate optimal control and to esti- 

mate the error for a stoohastic system of the form 

dE (t) = (G (6 W -t B (t) u) dt + drl W (1.11 

dq (t) = $ b, (t) dW, (t) + s c (2, t) v” (dl, dz), eoE = qo E Ho 
7=1 Rn 

(E (t) e R” is the phase vector and u C? R1 is the control). The initial condition 
cpo and the number T are prescribed and E > 0 is a small parameter. The funct- 

ional f (t, cp) is measurable and defined on [0, TJ X Ho , It is assumed that a 

function r (t, f), nonnegative and nondecreasing in z , exists, for which the inequal- 
ities 
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(1.2) 

h 

are valid. The YL X I -matrix B (t) and the n -dimensional vectors b, (8) (1” = 

1 ,- f -9 N) and C (z, t) (x E I?“) are measurable and bounded in IO, TJ. We 
note that the system 

6 (t> = (A (r) El (t) + af (4 Ml) + B (4 ~1 dt + drl (t) 

is easily reduced to a system of form (1.1) by the change of variables Er. (t) = 2 (t) 

E ft). Here 2 (t) is a solution of the matrix differential equation z’ = AZ with 
initial condition 2 (0) = I , where I is the unit matrix. 

Let D be the class of functionals V (t, cp) in [O, 2’1 X Ho , such that for 

any function 9, (z) , fixed for -4 < r < 0 v and for an arbitrary vector z = q) 
(0) the function V, (t, x) = 17 (t, cp) is twice continuously differentiable in x and 

has a continuous derivative in t for almost all t from JO, TJ. With system (1.1) 

we connect an ~tegro-~ffer~tial operator L, defined on I) and having the form 

-&R’ (k rp) = &V, (4 5) + (af (t, cp) + B (0 4’ VI% (6 4 

av(p @. x1 
iv 

&45&, 4 = at + + c b,’ (t) VV rp (t, 4 5, (4 + 
r=i 

5 IV, (r, 5 + C (a, t)) - V, (t, 4 - c’ (a, 0 ‘c7v, (k 41 n (4 
R” 

Here the prime is the sign of transposition and 8vtr,i& is the partial derivative in r, 
while VV, and ‘PV, are, respectively, the vector of first derivatives and the matrix 

of second derivatives with respect to 5 = 93 (0) of the functionVcp (4 5) = V (t, 9) 

with function cp (z) fixed on -4 < z < 0. 
An arbitrary control u is said to be admissible if under this control system (1.1) has 

a solution (not necessarily unique) and the functional G (0, u), where 

G(t, u) = lli, {H (P (T)) + 3 p (ST @a%, 24 (s)) ds} 

is finite. Here M, is the mean, computed under the condition that the trajectory of 
process %” (s) on [t - h, t] is fixed and coincides with a specified function cp E 

Ha. The functions H (z) and F (t, tp, U) are prescribed and are nonnegative. 

Let U be the class of admissible controls. The optimal control problem consists in 
choosing from U the control u under which functional G (0, U) is minimal. In gener- 
a& the optimal control depends upon time t and upon the trajectory f!I&” of the 
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controlled process up to instant t , i.e., has the form of a functional u (t, rp), 
measurable on [O, 2’1 x Ho , such that u (t) = u (t, 6&) EU. The foll- 
owing theorem is valid R]. 

T h e o r e m. Let there exist a functional V (t, rp) E D and a control v = 

v (t, q) E Usatisfying the conditions 

L,Y (& cp) + F (6 cp, u) > 07 J&v (C 9) + F (C 0% r.6 (6 cp)) = (I.31 

0, F.T (T, cp) = H (cp (0)) 

for almost all t E [O, 2’1, for all tp E He and for alI u E U . Then control 
v is optimal in the sense of performance index G (8, u), and the refation 

G (t, v) = inf,=vG (t, U) = ‘v (t, cp) 

is valid for all t > 0 and rp E Ha , 
In what follows it is assumed that 

F (t, cp, u) = qp’ (0) F (t) rp (0) + u’N (t) u, H (a$ = x’Hx 

where N (t) and F (t) are measurable and bounded, N (b) is uniformly positive 
definite and F (t) and H are nonnegative-definite matrices. Let t’ (t, cp) = VP 
(t, 5) be the minimal value of the performance index under the initial condition 0,E 
= cp. Conditions (1.3) can then be combined into one relation that is an analog of 

Bellman’s equation for the problem being analyzed 

inf,,v U&V~ (4 4 + (ef (h cp) + B (t) u)‘VVv (4 4 + x’J’(t) 5 + 
u’iv (t) ul = 0, 5 = cp (0) 

Whence it follows that V, (t, x) is determined by the equation 

r;,,v, (t, X) + ef’ (t, VP) vv, (t, z) + 3’8’ (0 5 = 

l/pvVtp’ (t, x) Rl Q) vv, 6, 2) 

V, (T, z) = s’Hx, x = cp (0), B1 = BN-‘B’ 

(1.4) 

The optimal control v (t, tp) equals 

v (t$ cp) = ---‘/*N-i @) B’ (t) vv (t, 0) 

2. It is weIl known [ll] that when E = 0 Eq. (1.4) has an exact solution of form 
Va (t, ‘p) = cp’ (0) P (t) rp (0) + PI (t). Here the matrices P and P1 are bound- 

ed, noMegative-de~te and depend only on the parameters of system (1.1) and of 
the performance index. When e = 0 the optimal control is 

uo (k 9) = u. (t, cp (0)) = ---N-l (t) B’ (t) P (t) cp (0) 

Let us show tit this control is the zeroth approximation to the optimal one, i. e., 
yields an error of the order of S in the performance index. 

We introduce the following notation geU is the solution of system (1.1) with 8 > 0 
and control u; !&” is the solution of system (1.2) with E = 0 and control U; u and 

u are, respecitvely, the control and the optimal control in system (1.1) with E > 0. 
We assume 
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ve (cpo) = 1, (v), vo (cpo) = 10 b) 
Choosing the measurable random processes a (t) = no (t, %oUo (t)) and b (r) = u 
(t, &&‘) as the controls in Qt , we conclude that 

T/‘, (cpo) = inf*v I, (U) < 18 (a) = vo (To) + [I, (a) - Io (a)1 

v. (cpo) = inf,v IO (u) < Io (b) = J’e (TO) + [IO (b) - 18 @)I 

Consequently, 

I vo (To) - Ve (TO) I < max [I 10 (a) - le (a) 19 (2.1) 

1 10 (b) - Ie (b) II 

Further, using the arguments used in [6], we can show that for any Ql -measurable 
random process y (t) for which 

s’whw~~\<w + IIcpo,a) =CO (2.2) 
0 

there holds the inequality 

M,~ -+Po(t<T 1 %e’ (t) I”} < c (2.3) 

Here and everywhere subsequently C stands for certain distinct positive COnSMdS 

depending on the control problem’s parameters but not on the initial condition of 
system (1.1). The inequality 

1cf,,{~upo~tsT I Et? @) - %oY 0) I”) < e2c0 (2.4) 

can be proved similarly. From (2.3) and (2.4) it follows that 

I 18 (Y) - 10 (~1 I = 1 Mm [ (%a7 G”) - Eo” G”))’ H (%2 (T) + %oY (J')) + (2.5) 

T 

,s (%2(s) - %oW)'F (4 (%2(s) + Eo" (s))ds 1 < 

c [Mqo {SUPo=sit,<T ] %ey (t) + %o’ (t) I } X 

M,, {SUPo,<t<T 1 !a’ (t) - %o’l’ (t) 1 }]“’ < do 

Let US show that controls u (t) and b (t) satisfy an inequality of form (2.2). Let 

4 = i&to, TI,IUI=IU'N (t)U 

Since N (t) is positive definite uniformly in t ,then 4 > 0. 
T T 

“,“” 

s 
M,, I a (t) 12 dt = ’ M,, I uo (h %oUo (t)) I2 02 < $5 Kg x 

I 
0 0 0 
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Similarly for b (t). Consequently, the estimates of form (2.3) -( 2.5) are valid for 
controls a (t) and b (t) . Hence from (2.1) follows 

Estimates of form (2.3) -(2.5) can be obtained similarly for the control uo, 
making use of its linearity with respect to E (t). Consequently, 

I Je (uo) - Jo (uo) 1 =G EC0 
ThUS 

0 < Js (uo) - Je (4 < I Je No) - Jo ho) 1 + I Vo (rpo) - (2.6) 

vt! (cpo) I < EC0 

Q. E. D. 
We note that in this proof we made essential use of a certain auxiliary controlled 

system for which control uo is optimal and functional V. (t, cp) = V,” (t, ‘p (0)) 
is Bellman’s function. We use this proof method later on. To be precise, at each step 

an auxiliary controlled system is constructed, for which the next approximation uk 

to the optimal control is itself optimal and some functional Qlc (t, q) = QVl’(t, cp 
(0)) is Bellman’s function. For k > 1 we choose Eq. (1.1) as the auxiliary controll- 

ed system, while the functional Qk differs from the Bellman’s function for the original 

problem by an amount of order &‘+l. The need for bounds of form (2.4) is now 
eliminated. In addition, no assumptions are made on the Bellman equation for the 

original problem when proving the error estimates. 
To illustrate what we have said we present another proof of estimate (2.6) differ- 

ent from the preceding one. It is precisely this proof that will be generalized later on 
to higher-order successive approximations, First of all we note that the equations 

&WP (t, r) + e f’ (t, cp) (VWQ (t, r) - 2p (0 x) + (2.7) 
x’F (t) x=‘/,VWq’ (t, 5) B, (t) vWq (t, x) 

WV (T, x) = x’Hx, z = cp (0) 

defines Bellman’s function for the optimal control problem with equation of motion 
(1.1) and performance index I, of the form 

T 

I, (u) = J, (11) - 2&M,. 
s f’ (s, es* E,“) p (s) EeU (s) ds 

. 
0 

(2.8) 

From relations (1.4) with E = 0 it follows that the functional VO(~, CP) = cp’ W’tWO) 

+ P, (t) is a solution of Eq. (2.7) for any E > 0. Similarly to [S] it can be shown 

that the solution of Eq. (2.7) is unique for sufficiently small E . Thus, ITo is 
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EMlrnan’s function and u. is the optimal control for problem (1.1). (2.8). 

Now let W, (CPO) = 1, (UO) and C (t) = u. (t, E,” (t)). As before, we have 

We assume 

0 < J, (~0) - J, (~1) < I J, (4 - I, (uo) 1 + 

1 we ho) - Va (~0) I d I J, (uo) - I, (uo) 1 + 

max [ 1 J, (‘2 - 1, (Cl I, I J, (b) - I, (b) II 

From (2.8) and (1.2), for any u E U follows 

I 1, (4 - J, (4 I d 8 C 1~ (4 (1 + II ‘PO II 2 + 

17, (U))l?“d CC (1 + II ‘po il a + a (u)) 

Hence (2.6) follows from the fact that estimates (2.3) hold for controls uo, C and b w 

3. We now pass on to the higher (k > 1) approximations to the optimal control. 
The algorithm for constructing these approximations is as follows. We represent funct- 
ional V as the series 

where Vi E D. We substitute this expansion into Eq. (1.4) and we equate the co- 
efficients of like powers of e to zero. Allowing for Eq. (1.4) for Va (t, (p) with 
E = 0, we obtain that functionals Vi (t, ‘p) = V,i (t, 5) (i = 1, 2, . s e) 

are determined by the recurrence equations 
i 

L&j (t, z) $- f’ (t, (9) ovF(t, Z) = $ z ov; (t, X) B&) VV;-j(t, X) (3. 1) 

3=0 

vqi (T, 2) = 0, 0 = qJ (0) 

Having thus determined Vi (t, cp) (i = 1, . . . , k), we specify the k -th approx- 
mation to the optimal control as 

uk (t, Cp) = --‘/2N-1 (t) B’ (t) [vvo (t, Cp) + . . . + eKVVk (t, Cp)] 

The effectiveness of the algorithm presented depends upon the ability to compute the 

ftmctionals Vi (t, cp). For V. (t, cp) there is an explicit formula. For i > 1 
by virtue of (3.1) we have 

LVj (t, cp) + si (4 rp> = 0, vi (TV cp) = 0 (3.2) 
i-l 

si (t, 9) = f' (t, cp) ~~i-1 (t, up) - t C vvj’ (G CP) BI (t) vvi-j (t, CP) 
j=l 

In (3.2) L denotes the generating operator of the stochastic differential equation with- 

out time lag 
dE (a) = --Bl (s) P (s) E (s) ds + dq (4, s CE it, 2’1, e,t = cp (3.3) 
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In deriving (3.2) we used the following indentity: 

2 v v,qt, cc) RI(t) G vg+, 3) i= 
j=O 

i-l 

L e m m a 1 [ 7 1. Let V (t, rp) E D and LX be the generating operator of 
system 

d% (8) = a (a, 6,%) ds + dri WY @,% = Q, @ < s < TJ (3.4) 

Then for any ti and ts 

From Lemma 1 follows 
L e m m a 2. Let V (t, cp) E L) and for any t & IO, 2’1 

LV(f, cp) + ?- (t, (p) = 0, v (T, rp) = 0 

where L1 is the generating operator of system (3.4). Then functional V (t, cp) is 
representable as 

v (t, cp) = ii/l, i r (s, t&%1 da 
t 

where E (s) is a sobrtion of system (3.4). 
For i = i we write (3.2) as 

LV,i (t, z) + 2f’ (t, cp) P (t) z = 0 

V,l (T, 5) = 0, z = Q, (0) 

(3.5) 

If v,i and W,l are two solutions of Eq. (3.5), then for R,l = VT1 - ?fVql 
it follows ~43 from LR,l (t, r) = 0 and R,’ (T, 5) = 0 that R,l (t, z) = 0, 
i.e., the solution of Eq. (3.5) is unique. The uniqueness of the solution of Eq. (3.2) 
for all i > 0 can be proved similarly by mathematical induction. On the basis of 

Lemma 2, from this and from relations (3.2) and (3.3) follows the representation 

(3.6) 

Here % (Z) is a solution of Eq. (3.3), and for Z < t the process % (z) is determin- 

ed by the equal.Q E (z) = Q, (Q, where cp (Z) is a prescribed deterministic function, 

In some cases the computation of the right hand side of (3.6) reduces to a quadrat- 
ure. For instance, let f (t, t&Q = f(t, 5 (t - h)), where h > 0 is a specified con- 
stant, and let P (t, z, S, Y) be the transfer probability density of the process specified 
by Eq. (3.3). Then when i = 1 representation (3.6) can be written as (0 d t f h d 

T) 
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f+h 

VlC4 9) = 2 J J f’ IS? cp (3 - h)) p (8) YP (4 ip @)t 89 Y) dY as + 
-f JP 

T 

2 J J J f’ b, 2) P fsjy~ 0, CP (t), s - h, 4 P (3 - h zv s, Y) dz do as 
t+h p p 

We note that the density P It, 2, a1 Y) occurring in the last formula also can be com- 
puted in explicit analytic form for certain systems of form (3.3). Estimates of the 
error in the functional, admissible under control Uk for k & 1, are established ana- 
logously. Therefore, we give a detailed proof of the error estimate only for the fust- 
approximation control ul so important from the practical point of view. 

As already noted, the main idea of the proof is the c~~ction of an auxiliary 
control problem for which al is the optimal control and functional Q1 , equalling 

QI= Vi, + ev,, is Bellman’s function. Let us construct the auxiliary control problem. 
We add J& (1.4), in which e = 0 , and JZq. (3.1) multiplied by E , in which i = i. 
Then for functional QI (t, VP) = Qcp’ (t, 2) we obtain the relations 

&Q,l(& 5) + %‘I+ (0 2 + G’ fc ~1 Qcpl (h 4 4 $ CIV,” tt. ~}~~(~)v~~~~,~)- 

@f (h cp) VV,’ (4 2) = 

f vQ,*’ (t, 4 & (t) vQq’ (4 x). Q&T, x)=x'Hz, z =g, (0) 

Consequently, uz is the optimal control and QI (t, 9) is Bellman’s function for 
the control problem with equation of motion (1.1) and performance index 

T 

Let us assume that functional VI (tt 9) satisfies the ineqnality 

I VVl 09 cp)P r; c (1 + H cp II") 

We set 

(3.7) 

Then, as above, it is easy to establish the inequality 

I I”, (4 - Je (4 I d @C (1 + II cpo II a -f- a (14)) 

In addition, for v,l (rpo) = 1~1 (u& and c1 (t) = u1 (t, 6$,,U~) 

IV, (90) - VP1 NO) I <ma= IlI,1 (4 - Je (cl) I, 1 J: (5) - J8 !b) 11 

Bounds of form (2.3) are fulfilled for controls I (t) and cr (t) . Consequently, 

I v, (cpo) - vex (cpo) I B TV 
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Using (3.7) we can show that a bound of form (2.3) is valid for control ul. 
ThUS 

0 < Je (1L1) - J (p) G I Je (q) - 1,l (4 I + I r7ex (PO) - v, (q+J I G fNO 

where the constant c” can be estimated in terms of the parameters of the original 
problem. Thus we have shown that for the original control problem the control uI 
yields an error in the functional of order aP . To complete the proof it remains to 
show that functional VI does indeed satisfy condition (3.7). From (3.6) with i = 1 

we have T 

v1 (t, (p) = 2M, s f’ (5, e,E) P (4 4 (4 ds 
t 

where E (s) is a solution of Eq. (3.3). 
Now let E (s) be the solution of Eq. (3.3) for 8115 = cp and EI (s) for QjE, = 

R. Then 

f ‘ (s, 0,E) P (4 4 (s) ds - M,% 
5 

f’ 6% e,Q P (4 4x (4 W a = 
t I 

4 
I s 
M T (f’ (s, O,C) P (s) E (s) - f’ (s, 

t 
@$I) P (s) b (s)) ds 12f 

T 

8T 
[f 

M (G’ (3, 08C) - f’ (st Q,f&)) P (4 4 @)I~~ -I- 
t 

T 

s M (/’ (s, es&) P (s) (E (4 - 51 W2 ds < 
t 1 

Let cp, (s) = q (s) when --h<~-<0, cp(O)=z and r~~(O)=z+Ax. Theo 

th- ‘pl II * = I Ax I 2 and 
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whence follows (3.7) 

4. For the zeroth and first approximations we have constructed auxiliary control 
problems with equation of motion (1.1) and performance indices differing from that 
of the original problems by amounts of the order of E and e2 , respectively. Let 
us construct the auxiliary problem for which ZL~ is the optimal control and the funct- 
ional 

Qk = Vo + &VI + . . . + 8% (4.1) 

is Bellman’s function for all k > 1. We add Eq. ( 1.4), in which E = 0, and Eq. 
(3.1) multiplied by &i (i - 1, . . . . k). In the resulting equality we add and sub- 
tract the expression 114 vQk’B, v Qk. As a result of this, with z = cp (0) 
we obtain 

L,Qcpk(t, 4 + x'F(t) x -I- 4(t, cp) v Qcp'(t, 4 t 
+ [v Q$’ (t, 2) Br (t) V Qvk 6 4 - 

2 pi 2 v V,j’ (t, X) Bf (t) V I?,? (4 x)] - 

i=l j=o 

Ek+lf’ (t, Cp) v v,” (t, x) = f v Qqk’ (t, x) BI (t) V QQk (b x) 

Using (4.1) we transform the epxression within brackets in the following manner: 

E*+* v V,‘BI V V, - i d i V Vj’Bl v Vi-j = 
i=o j=O 

k k+j 

2 2 &i C Vj’Bl V Vi-j - 
j=Oi=j 

,i V Vj’Bl V Vi-f = 

k j-1 

Ei V Vj’Bl T? Vi-j = Ed+’ 2 2 ci V Vj’Br V Vi-i 
j=li=O 

Thus, for functional Qk (t, cp) we have obtained the eqUatiOn 

LoQcp'l (t, z) + ef’ (4 ‘p) V Qqk (k 4 + z’F (t) 5 + 
&k+li3t (t, cp) = ‘/a v Qqk’ (t, z) Br V Qq (h 4 

k j-1 

6k = f 7, y, E+ V Vj’Bl V Vk+l+i-j -- f’ V Vk 

j=l LO 

Consequently, Qk (t, q) is Bellman’s function for the control problem with equation 
of motion (1.1) and with the functional 

I,“(u) = J, (u) + ek+lMJ 6k (a, %LU) dr 
0 

to be minimized. 
Representation (3.6) enables us to establish certain sufficient conditions and 
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constraints on f (t, cp), under whose fulfilment the functionals Vt (t, cp) satisfy a 

bcund of form (3.7). After this, analogo~ly to the preceding, we can prove that 

9 f J, (Uk) - JR (2’) < 8 k+l,y 

In conclusion we note that it is not difficulttogeneralize the results obtainedtosystems 
of form 

ii: (t) = (a f (t, 9tQ + B (1) u W + d’~ tt) + drlr (t) E (t) 

where %h (t) is a matrix-valued process with independent increments, while the re- 
maining parameters have the same sense as in Eq* (1. l), as well as to systems with 
noice in the control. 
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